Harmonic oscillator realization of the canonical q-transformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L63
(http://iopscience.iop.org/0305-4470/24/2/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 13:52

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Harmonic oscillator realization of the canonical q-transformation

A T Filippov, Debashis Gangopadhyay and A P Isaev
Laboratory of Theoretical Physics, Joint institute for Nuclear Research, Dubna, Moscow, USSR

Received 31 October 1990

Abstract

Exact realization of the canonical \boldsymbol{q}-transformation for \boldsymbol{q}-oscillators is obtained in the context of the harmonic oscillator realization of q-oscillators.

Quantum Lie algebras first appeared in investigations of the quantum inverse scattering problem during the study of the Yang-Baxter equations [1]. They can be considered as some 'deformation' of the Lie algebra with the deformation parameter ' s ' or $q=e^{s}$, such that the usual Lie algebra is reproduced in the limit $s \rightarrow 0$, i.e. $q \rightarrow 1$. It has been pointed out by Drinfeld [2] that these deformed structures are essentially connected with quasi-triangular Hopf algebras, and the generalization to all simple Lie algebras has been given [2,3]. There are versions of deformed Kac-Moody and Virasoro algebras [4], the realization of quantum $\mathrm{SU}(2)_{q}$ algebra in terms of q-oscillators has been extensively studied [5], and there exist q-oscillator realizations of many other quantum algebras [6]. In the context of the harmonic oscillator realization of q-oscillators [7], it has been shown in [8] that the general solution to this realization contains two arbitrary functions of q. The known realization results when these functions are taken to be unity. In this letter we establish a new harmonic oscillator realization of bosonic q-oscillators which can be interpreted as canonical q-transformations. We obtain exact expressions for the transformation coefficients and again demonstrate the existence of arbitrary functions of q which, in the limit $q \rightarrow 1$, are related to the parameters of the $\operatorname{SL}(2, R)$ group. We also briefly discuss the features that distinguish our transformations from the transformations of the $\operatorname{SL}(2, R)_{G}$ group.

The equations characterizing the q-deformed bosonic oscillator system are

$$
\begin{array}{lc}
\tilde{a} \tilde{a}^{+}-q \tilde{a}^{+} \tilde{a}=q^{-N} & N^{+}=N \\
N \tilde{a}=\tilde{a}(N-1) & N \tilde{a}^{+}=\tilde{a}^{+}(N+1) \tag{2}
\end{array}
$$

\tilde{a}, \tilde{a}^{+}and N are the annihilation, creation and number operators respectively. Usual harmonic oscillators \hat{a}, \hat{a}^{+}are described by

$$
\begin{array}{ll}
\hat{a} \hat{a}^{+}-\hat{a}^{+} \hat{a}=1 & \hat{N}=\hat{a}^{+} \hat{a} \\
\dot{N} \hat{a}=\hat{a}(\hat{N}-1) & \hat{N} \hat{a}^{+}=\hat{a}^{+}(\hat{N}+1) \tag{4}
\end{array}
$$

where \hat{N} is the number operator. According to [8] the most general harmonic oscillator realization of the q-oscillator represented in the simplest form

$$
\begin{equation*}
\tilde{a}=\hat{a} u(\hat{N}) \quad \tilde{a}^{+}=u(\hat{N}) \hat{a}^{+} \tag{5}
\end{equation*}
$$

is

$$
\begin{align*}
& \tilde{a}=\hat{a}\left(\frac{q^{\hat{N}} \phi_{1}-q^{-\hat{N}} \phi_{2}}{\hat{N}\left(q-q^{-1}\right)}\right)^{1 / 2} \quad \tilde{a}^{+}=\left(\frac{q^{\hat{N}} \phi_{1}-q^{-\hat{N}} \phi_{2}}{\hat{N}\left(q-q^{-1}\right)}\right)^{1 / 2} \hat{a}^{+} \\
& N=\hat{N}-(1 / s) \ln \phi_{2} \tag{6}
\end{align*}
$$

where the functions $\phi_{1}(q, \hat{N})$ and $\phi_{2}(q, \hat{N})$ are such that $\phi_{i}(q, \hat{N}+1)=\phi_{i}(q, \hat{N})$ and belong to what we name as class P of the periodic functions. Considering the feature $\left[\phi_{i}, \hat{a}\right]=\left[\phi_{i}, \hat{a}^{+}\right]=\left[\phi_{i}, \hat{N}\right]=0$, we can take ϕ_{i} (without loss of generality) to be functions of q only. Choosing $\phi_{1}=\phi_{2}=1$ gives the well known realization [7].

We now seek the representation for q-oscillators in terms of usual harmonic oscillators in the form

$$
\begin{equation*}
a=\hat{a} u(\hat{N})+v(\hat{N}) \hat{a}^{+} \quad a^{+}=u^{*}(\hat{N}) \hat{a}^{+}+\hat{a} v^{*}(\hat{N}) \tag{7}
\end{equation*}
$$

For future convenience we denote the q-oscillators by a instead of $\tilde{a} . u(\hat{N}), v(\hat{N})$ are functions to be determined subsequently.

For simplicity, we choose the fundamental q-commutator as

$$
\begin{equation*}
a a^{+}-q^{2} a^{+} a=1 \tag{8}
\end{equation*}
$$

This is equivalent to (1) under the identification

$$
\begin{equation*}
a=q^{N / 2} \tilde{a} \quad a^{+}=\tilde{a}^{+} q^{N / 2} \tag{9}
\end{equation*}
$$

Equation (2) becomes

$$
\begin{equation*}
N a=a(N-1) \quad N a^{+}=a^{+}(N+1) \tag{10}
\end{equation*}
$$

Using (6) and (9) we can write (7) in the form of the canonical q-transformation ('Bogolubov q-transformation')

$$
\begin{align*}
& a^{\prime}=a \tilde{u}(\hat{N})+\tilde{v}(\hat{N}) a^{+} \\
& a^{\prime+}=\tilde{u}^{*}(\hat{N}) a^{+}+a \tilde{v}^{*}(\hat{N}) \tag{11a}
\end{align*}
$$

i.e.

$$
\binom{a^{\prime}}{a^{\prime+}}=\left(\begin{array}{cc}
\tilde{u}(\hat{N}+1) & \tilde{v}(\hat{N}) \tag{11b}\\
\tilde{v}^{*}(\hat{N}+1) & \tilde{u}^{*}(\hat{N})
\end{array}\right)\binom{a}{a^{+}}
$$

where $\left(a, a^{+}\right),\left(a^{\prime}, a^{++}\right)$satisfy (8), * denotes complex conjugation and

$$
\begin{equation*}
\tilde{u}(\hat{N})=\left(\frac{\hat{N}\left(q^{2}-1\right)}{\phi_{1} q^{2 \hat{N}}-\phi_{2}}\right)^{1 / 2} u(\hat{N}) \quad \tilde{v}(\hat{N})=v(\hat{N})\left(\frac{\hat{N}\left(q^{2}-1\right)}{\phi_{1} q^{2 \hat{N}}-\phi_{2}}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Thus our transformations (11) act on the two-dimensional quantum space of vectors (a, a^{+}) satisfying (8) and preserve this property for ($a^{\prime}, a^{\prime+}$), so we can interpret our transformation ($11 b$) as an element of the q-deformed $\operatorname{SL}(2, R)$ group. However, this q-deformed group is not related to the quantum group $\operatorname{SL}(2, R)_{q}$ as the quantities $\tilde{u}, \tilde{v}, u^{*}, v^{*}$ in (11) are commuting operators while the elements of the $\operatorname{SL}(2, R)_{q}$ matrix U have non-trivial commutation relations. Indeed, in the theory of quantum groups $[2,3] \operatorname{SL}(2, R)_{q}$ transformations have the form similar to (11b):

$$
\binom{a^{\prime}}{a^{\prime+}}=\left(\begin{array}{cc}
u & v \tag{13a}\\
v^{*} & u^{*}
\end{array}\right)\binom{a}{a^{+}}=U\binom{a}{a^{+}} .
$$

However, for the $\operatorname{SL}(2, R)_{q}$ case we suggest that u, v, u^{*}, v^{*} are mutually non-commutative objects but they commute with (a, a^{+}). The conjugate transformations to (13a) are:

$$
\left(a^{\prime \prime}, a^{\prime \prime+}\right)=\left(a, a^{+}\right)\left(\begin{array}{cc}
u & v \tag{13b}\\
v^{*} & u^{*}
\end{array}\right) .
$$

Then the condition that $\left(a, a^{+}\right),\left(a^{\prime}, a^{\prime+}\right)$ and ($\left.a^{\prime \prime}, a^{\prime \prime+}\right)$ satisfy (8) (i.e. (13a,b) are canonical q-transformations) gives us the condition $\operatorname{det}_{q^{2}}(U)=u u^{*}-q^{2} v^{*} v=1$ and the braiding rules for the elements of the matrix U [see 3 and references therein]:

$$
\begin{align*}
& u v^{*}=q^{2} v^{*} u \tag{14a}\\
& v u^{*}=q^{2} u^{*} v \tag{14b}\\
& v v^{*}\left(q^{-2}-q^{2}\right)=u^{*} u-u u^{*} \tag{14c}\\
& u v=q^{2} v u \quad v^{*} u^{*}=q^{2} u^{*} v^{*} \tag{14d}\\
& v^{*} v=v v^{*} . \tag{14e}
\end{align*}
$$

In this letter we shall concentrate on the canonical q-transformations (11). We wish to determine $u(\hat{N})$ and $v(\hat{N})$ of the representation (7). Substituting (7) in (8) and using (3) and (4) we have

$$
\begin{align*}
& F(\hat{N}+1)-q^{2} F(\hat{N})+G(\hat{N})-q^{2} G(\hat{N}+1)=1 \tag{15}\\
& u(\hat{N}) v^{*}(\hat{N}+1)=q^{2} v^{*}(\hat{N}) u(\hat{N}+1) \tag{16a}\\
& u^{*}(\hat{N}) v(\hat{N}+1)=q^{2} v(\hat{N}) u^{*}(\hat{N}+1) \tag{16b}
\end{align*}
$$

where

$$
\begin{equation*}
F(\hat{N})=\hat{N} u^{*}(\hat{N}) u(\hat{N}) \quad G(\hat{N})=\hat{N} v^{*}(\hat{N}) v(\hat{N}) \tag{16c}
\end{equation*}
$$

It is interesting to note that ($16 a, b$) can be written in the form ($14 a, b$) under the convention that in the product of two operators the operator which is a function of \hat{N} is placed to the left of the operator which is a function of $(\hat{N}+1)$.

Multiplying (16a) and (16b) gives

$$
\frac{G(\hat{N}+1)}{F(\hat{N}+1)}=q^{4} \frac{G(\hat{N})}{F(\hat{N})}
$$

whose solution is

$$
\begin{equation*}
\frac{G(\hat{N})}{F(\hat{N})}=q^{4 \hat{N}} W(q, \hat{N}) \tag{17}
\end{equation*}
$$

where the arbitrary function of $q, W(q, \hat{N})=W(q, \hat{N}+1)$ and is thus some arbitrary P-function. For reasons discussed before, W may be taken as a function of q only. Substituting (17) in (15) we get

$$
\begin{equation*}
F(\hat{N}+1)\left\{1-q^{4(\hat{N}+2)} \tilde{W}\right\}-q^{2} F(\hat{N})\left\{1-q^{4 \hat{N}} \tilde{W}\right\}=1 \tag{18}
\end{equation*}
$$

where $W=q^{2} \tilde{W}$. To solve the functional equation (18) we first determine the solution $F_{0}(\hat{N})$ to the corresponding homogeneous equation

$$
\begin{equation*}
F_{0}(\hat{N}+1)\left\{1-q^{4(\hat{N}+2)} \tilde{W}\right\}=q^{2} F_{0}(\hat{N})\left\{1-q^{4 \hat{N}} \tilde{W}\right\} \tag{19}
\end{equation*}
$$

The solution of (19) has the form (see appendix)

$$
\begin{equation*}
F_{0}(\hat{N})=Q(\hat{N}) Q(\hat{N}+1) P(\hat{N}, q) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(\hat{N})=\frac{q^{\hat{N}}}{1-q^{4 \hat{N}} \tilde{W}} \tag{21}
\end{equation*}
$$

and $P(\hat{N}, q)$ is an arbitrary P-function. We shall soon see that for a suitable choice of initial conditions the general solution of (18) is independent of $P(\hat{N}, q)$.

We represent the general solution of (18) as

$$
\begin{equation*}
F(\hat{N})=F_{0}(\hat{N}) Y(\hat{N}) \tag{22}
\end{equation*}
$$

where $Y(\hat{N})$ is to be determined. Putting (22) in (18) yields

$$
\begin{equation*}
Y(\hat{N}+1, q)=Y(\hat{N}, q)+\frac{\left(1-W q^{4 \hat{N}+2}\right)}{q^{2 \hat{N}+3} P} \tag{23}
\end{equation*}
$$

With the use of standard techniques the solution to (23) is found to be

$$
\begin{equation*}
Y(\hat{N}, q)=Y(0, q)+\frac{q^{-\hat{N}}-W q^{\hat{N}}}{q^{2} P(\hat{N}, q)}[\hat{N}] \tag{24}
\end{equation*}
$$

where $[x]=q^{x}-q^{-x} /\left(q-q^{-1}\right)$ and $Y(0, q)$ is some initial value. Using (24), (22) and (16c) we see that the condition $\left.u(\hat{N})\right|_{\hat{N}=0}<\infty$ leads to $Y(0, q)=0$. Using (20) and (22) we thus arrive at our solutions for $F(\hat{N})$ and $G(\hat{N})$

$$
\begin{align*}
& F(\hat{N})=\frac{q^{\hat{N}-1}\left(1-q^{2 \hat{N}} W\right)}{\left(1-q^{4 \hat{N}-2} W\right)\left(1-q^{4 \hat{N}+2} W\right)}[\hat{N}] \\
& G(\hat{N})=q^{4 \hat{N}} F(\hat{N}) W \tag{25}
\end{align*}
$$

This is independent of P as promised, but the dependence on W is non-trivial as we shall see. One can verify that the solutions (25) do indeed satisfy (18). Using definitions (16c) we have

$$
u(\hat{N})=|u(\hat{N})| \mathrm{e}^{i \alpha(q, \hat{N})} \quad v(\hat{N})=q^{2 \dot{N}} W^{1 / 2}|u(\hat{N})| \mathrm{e}^{i \beta(q, \hat{N})}
$$

with

$$
\begin{equation*}
|u(\hat{N})|=\left(\frac{q^{\hat{N}-1}\left\{1-q^{2 \hat{N}} W\right\}}{\left\{1-q^{4 \hat{N}-2} W\right\}\left\{1-q^{4 \hat{N}+2} W\right\}} \frac{[\hat{N}]}{\hat{N}}\right)^{1 / 2} \tag{26}
\end{equation*}
$$

and $\alpha(q, \hat{N}), \beta(q, \hat{N})$ some arbitrary phase factors. Equations (16a,b) are also trivially satisfied by (26). Therefore the representation (7) for q-oscillators, as realized in terms of ordinary oscillators, may be written as

$$
\begin{align*}
& a=\hat{a}\left\{|u(\hat{N})| \mathrm{e}^{\mathrm{i} \alpha}\right\}+\left\{q^{2 \hat{N}} W^{1 / 2}|u(\hat{N})| \mathrm{e}^{\mathrm{i} \beta}\right\} \hat{a}^{+} \\
& a^{+}=\left\{|u(\hat{N})| \mathrm{e}^{-\mathrm{i} \alpha}\right\} \hat{a}^{+}+\hat{a}\left\{q^{2 \hat{N}} W^{1 / 2}|u(\hat{N})| \mathrm{e}^{-\mathrm{i} \beta}\right\} . \tag{27a}
\end{align*}
$$

Using (26), (27a) and (12) (for $\phi_{1}=\phi_{2}=1$) we can obtain the canonical q-transformation (11) in the form:

$$
\begin{align*}
& a^{\prime}=a\left\{|\tilde{u}(\hat{N})| \mathrm{e}^{\mathrm{i} \alpha}\right\}+\left\{q^{2 \hat{N}} W^{1 / 2}|\tilde{u}(\hat{N})| \mathrm{e}^{\mathrm{i} \beta}\right\} a^{+} \\
& a^{\prime+}=\left\{|\bar{u}(\hat{N})| \mathrm{e}^{-\mathrm{i} \alpha}\right\} a^{+}+a\left\{q^{2 \hat{N}} W^{1 / 2}|\bar{u}(\hat{N})| \mathrm{e}^{-\mathrm{i} \beta}\right\} \tag{27b}
\end{align*}
$$

with

$$
|\bar{w}\{\hat{N}\}|=\left(\frac{1-q^{2 \hat{N}} W}{\left\{1-q^{4 \hat{N}-2} W\right\}\left\{1-q^{4 \hat{N}+2} W\right\}}\right)
$$

We now comment on the presence of the function $W(q)$. Let $q \rightarrow 1$ and α, β be independent of \hat{N} in (26). Then we obtain

$$
\begin{equation*}
u(\hat{N})=\left(\frac{1}{1-W(1)}\right)^{1 / 2} \mathrm{e}^{\mathrm{i} \alpha(1)} \quad v(\hat{N})=\left(\frac{W(1)}{1-W(1)}\right)^{1 / 2} \mathrm{e}^{\mathrm{i} \beta(1)} \tag{28}
\end{equation*}
$$

Thus, for $q=1$, substituting (28) in (11) we get the usual SL(2,R) canonical transformation of the ordinary oscillators where $\alpha(1), \beta(1)$ and $W(1)$ are the parameters of the $\mathrm{SL}(2, R)$ transformations. Therefore, $\alpha(q, N), \beta(q, \hat{N})$ and $W(q)$ are parameters of the q-deformed $\operatorname{SL}(2, R)$ transformations (11). Note that for $W=0$ (and $\alpha=0, \beta=0$) representation (7) coincides with (6) when $\phi_{1}=\phi_{2}=1(Y(q, 0)=0)$. We can obtain the case $\phi_{1} \neq 1$ and $\phi_{2} \neq 1$ if we consider the situation when $Y(q, 0) \neq 0$ in (24).

Finally, let us write down an expression for the number operator using the general solution (6). We have

$$
\begin{equation*}
\tilde{a}^{+} \tilde{a}=\frac{\phi_{1} \phi_{2} q^{N}-q^{-N}}{q-q^{-1}} \tag{29}
\end{equation*}
$$

Then, using (9)

$$
\begin{equation*}
a^{+} a=\frac{\phi_{1} \phi_{2} q^{2 \hat{N}}-1}{q^{2}-1} \tag{30}
\end{equation*}
$$

so that

$$
\begin{equation*}
N=\frac{1}{2 s} \ln \left\{\phi+\phi\left(q^{2}-1\right) a^{+} a\right\} \tag{31}
\end{equation*}
$$

where $\phi=\left\{\phi_{1} \phi_{2}\right\}^{-1}$ and a^{+}, a satisfy (8), with their harmonic oscillator realizations given by (27a). Equations (10) are also satisfied by N as defined in (31). From expression (31) for N we see that the spectrum is non-trivially shifted. One can, using (31), write out an explicit relation for N in terms of \hat{N} and this will contain off-diagonal terms. Hence, the spectrum for q-oscillators is modified with respect to that of the usual case defined by \hat{N}. This is an interesting point. Another interesting question is: what is the relation between our q-deformed $\operatorname{SL}(2, R)$ transformations (11) and the quantum group $\mathrm{SL}_{q}(2, R)$? Whether physical applications of our results are possible is yet another avenue worth pursuing.

Appendix

Equation (19) is of the general form

$$
\begin{equation*}
F_{0}(\hat{N}+1) \bar{Q}(\hat{N}+k)=g(q) F_{0}(\hat{N}) \bar{Q}(\hat{N}) \tag{A1}
\end{equation*}
$$

where $g(q)$ and $\bar{Q}(\hat{N}+k),(k=1,2, \ldots)$, are known functions while $F_{0}(\hat{N})$ is the function to be determined. In (19)

$$
\begin{equation*}
k=2 \quad g(q)=q^{2} \quad \text { and } \quad \bar{Q}(\hat{N})=\left\{1-q^{4 \hat{N}} \tilde{W}\right\} \tag{A2}
\end{equation*}
$$

Note that if F_{1}, F_{2} are solutions of (A1) then

$$
\begin{equation*}
\frac{F_{1}(\hat{N}+1)}{F_{2}(\hat{N}+1)}=\frac{F_{1}(\hat{N})}{F_{2}(\hat{N})}=P(\hat{N}, q) \tag{A3}
\end{equation*}
$$

and thus $P(\hat{N}, q)$ is a P-function. It means that the general solution of (A1) is a product of a special solution and an arbitrary P-function. We can search for the general solution of (Al) in the form:

$$
\begin{equation*}
F_{0}(\hat{N})=\left\{\prod_{i=0}^{k-1} Q(\hat{N}+i)\right\} P(\hat{N}, q) \tag{A4}
\end{equation*}
$$

Putting (A4) in (A1) gives

$$
Q(\hat{N}+k) \bar{Q}(\hat{N}+k)=g(q) Q(\hat{N}) \bar{Q}(\hat{N})
$$

which after simplification results in

$$
\begin{equation*}
Q(\hat{N})=\frac{g(q)^{\hat{N} / k}}{\bar{Q}(\hat{N})} \tilde{P}(\hat{N}, q) \tag{A5}
\end{equation*}
$$

where $\tilde{P}(\hat{N}+k, q)=\tilde{P}(\hat{N}, q)$ is an arbitrary periodic function and we can put this function to unity without loss of generality $\left(\Pi_{i=0}^{k=1} \tilde{P}(\hat{N}, q)\right.$ is a P-function). Now using (A2), (A4) and (A5) one arrives at solutions (20) and (21).

References

[1] Faddeev L D 1982 Les Houches Lectures (Amsterdam: North-Holland)
Kulish P P and Sklyanin E K 1982 Lecture Notes in Physics 151 (Berlin: Springer) p 61
Kulish P P and Restitikhin N Yu 1983 Zap. Nauk. Semin. LOMI 101 101; 1983 J. Sov. Math. 232435 Sklyanin E K 1982 Funk. Anal. Appl. 16 27; 1983 Funk. Anal. Appl. 1734
[2] Drinfeld V G 1986 Proc. Int. Congress of Mathematics, Berkely vol 1 (Providence, RI: American Mathematical Society) p 798
Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11 247; 1987 Commun. Math. Phys. 102537 Woronowicz S L 1987 Commun. Math. Phys. 111613
Manin Y 11988 Quantum Groups and Non-Commutative Geometry (Montreal: Centre de Recherches Mathematiques)
Rosso M 1989 Commun. Math. Phys. 124307
Arnaudon D and Roche P 1989 Lett. Math. Phys. $17 \dot{2} 95$
[3] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1989 Algebra and Analysis 1178
[4] Bernard D 1989 Lett. Math. Phys. 17239
Frenkel I B and Jing N 1988 Proc. Natl Acad. Sci. USA 8S 9373
Polychronakos AP 1990 Consistency conditions and representations of a q-deformed Virasoro algebra Preprint University of Florida UFIFT-HEP-90-14
Chaichian M, Ellinas D and Popowicz Z 1990 Quantum conformal algebra with central extension Preprint University of Helsinki HU-TFT-90-37
[5] MacFarlane A J 1989 J. Phys. A: Math. Gen. 224581
Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
Sen C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983
[6] Chaichian M and Kulish P 1990 Phys. Lett. 234B 72
Chaichian M, Kulish P and Lukierski J 1990 Phys. Lett. 2378401
Kulish P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 L415
Floreanini R, Spiridonov V P and Vinet L 1990 Phys. Lett. 2428383
Floreanini R, Spiridonov V P and Vinet L $1990 q$-oscillator realisations of the quantum superalgebras $\mathrm{sl}_{q}(m, n)$ and osp $_{q}(m, 2 n)$ Preprint UCLA-90-TEP21
[7] Jannussis A, Brodimas G, Sourlas D and Zisis V 1981 Lett. Nuovo Cimento 30123
Polychronakos A P 1989 A classical realisation of quantum algebras Preprint University of Florida HEP-89-23
[8] Gangopadhyay D and Isaev A P 1990 JNR Rapid Commun. 43 in press

