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LETTER TO THE EDITOR

Harmonic oscillator realization of the canonical
g-transformation

A T Filippov, Debashis Gangopadhyay and A P Isaev

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow,
USSR

Received 31 October 1990

Abstract. Exact realization of the canonical g-transformation for g-oscillators is obtained
in the context of the harmonic oscillator realization of g-oscillators.

Quantum Lie algebras first appeared in investigations of the quantum inverse scattering
problem during the study of the Yang-Baxter equations [1]. They can be considered
as some ‘deformation’ of the Lie algebra with the deformation parameter *s’ or g =¢’,
such that the usual Lie algebra is reproduced in the limit 5 >0, i.e. g—> 1. It has been
pointed out by Drinfeld [2] that these deformed structures are essentially connected
with quasi-triangular Hopf algebras, and the generalization to all simple Lie algebras
has been given {2, 3]. There are versions of deformed Kac-Moody and Virasoro algebras
[4], the realization of quantum SU(2), algebra in terms of g-oscillators has been
extensively studied [5], and there exist ¢g-oscillator realizations of many other quantum
algebras [6]. In the context of the harmonic oscillator realization of g-oscillators [7],
it has been shown in [&] that the general solution to this realization contains two
arbitrary functions of q. The known realization results when these functions are taken
to be unity. In this letter we establish a new harmonic oscillator realization of bosonic
g-oscillators which can be interpreted as canonical g-transformations. We obtain exact
expressions for the transformation coefficients and again demonstrate the existence of
arbitrary functions of g which, in the limit g - 1, are related to the parameters of the
SL(2, R) group. We also briefly discuss the features that distinguish our transformations
from the transformations of the SL{2, R), group.
The equations characterizing the g-deformed bosonic oscillator system are

daat—gatda=q " N'=N (1)
Ni=a(N—-1) N&* =" (N+1) 2)

d, 4" and N are the annihilation, creation and number operators respectively. Usual
harmonic oscillators d, @~ are described by

agt—ata=1 N=d"d (3)
Ni=a(N-1) Na*=a"(N+1) (4)

where N is the number operator. According to [8] the most general harmonic oscillator
realization of the g-oscillator represented in the simplest form

d=du(N) a=u(N)a* (5)
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s (q ¢| q"°¢z)”2 d+=(q’°¢l—q"‘“’¢z)”2&+
N(g-¢™" N{g—q™")

. (6)
N=N—-(1/5)In ¢,

where the functions ¢,(g, N’) and ¢.lq, ﬁ) are such that ¢;(g, N+ 1) = o.(q, J‘Q’) and
belong to what we name as class P of the periodic functions. Considering the feature
[, d1=1¢:, 8 1=, N] 0, we can take ¢, (without loss of generality) to be func-
tions of g only. Choosing ¢, = ¢, =1 gives the well known realization [7].

We now seek the represcntation for g-oscillators in terms of usual harmenic
oscillators in the form

a=au(N)+o(N)§" a”=u*(N)d++dv*(N). (N

For future convenience we denote the g-oscillators by a instead of 4. u(N ), v(]Qr ) are
functions to be determined subsequently.
For simplicity, we choose the fundamental g-commutator as

aat—g*ata=1. (8)

This is equivalent to (1) under the identification

a=q"?% at=a g™ (9}
Equation (2) becomes
Na=a(N—-1) Na*t=a (N+1). (10)

Using (6) and (9) we can write (7) in the form of the canonical g-transformation
(‘Bogolubov g-transformation’)

a' =ai(N)+5(N)a*

. u (11a)
at =a*{N)a*+at*(N)
i.e.
a'\ _(#N+1) HN)\fa
(a”)‘(ﬁ*(ml) a*(ﬁ))(f) (118)
where (a,a”), (a, a’") satisfy (8), * denotes complex conjugation and
. qu_,))w q ( N(g’ 1))”2
Ny={—F7— N N=o(N)|———=) . 12
#N) (45:(12”-‘172 u(N) 5N =l N) N - ¢, (12)

Thus our transformations (11) act on the two-dimensional quantum space of vectors
(a, a™) satisfying (8) and preserve this property for {a’, a’"), so we can interpret our
transformation (11b) as an element of the g-deformed SL(2, R) group. However, this
g-deformed group is not related to the quantum group SL(2, R), as the quantities
i, 5, u*, v* in (11) are commuting operators while the elements of the SL(2, R}, matrix
U have non-trivial commutation relations. Indeed, in the theory of quantum groups
[2,3] SL(2, R), transformations have the form similar to (11b):

(:) =(uu* uu*)(;) - U(:*)' (13a)
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However, for the SL(2, R), case we suggest that u, v, ™, v* are mutually non-commuta-
tive objects but they commute with (a, a”). The conjugate transformations to (13a) are:

u v
(arr’ a:r+)=(a, a*}( « *). (13b)
v* u
Then the condition that (a, a"), (a',a’") and (a”, a"") satisfy (8) (i.e. (13a, b) are
canonical g-transformations) gives us the condition det,(U)=uu*—g°v*v=1 and
the braiding rules for the elements of the matrix I/ [see 3 and references therein];

uv* = g’v*u (14a)
vu* = g*u*v (14h)
w*(q - q") = u*u —uu* (14¢)
uv = gou v*u* = g’u*p* (14d)
v*o = po*. {14e)

In this letter we shall concentrate on the canonical g-transformations (11). We wish
to determine u(N) and v(N) of the representation (7). Substituting (7} in (8) and
using (3) and (4) we have

F(IN+1)—¢*F(N)+G(N)-g*G(N+1)=1 (15)

u(N)v*(N+1)=q v*(N)u(N-H) (16a)

w*(N)o(N+1) = g*o(N)u*(N +1) (16b)
where

F(N) = Nu*(N)u(N) G(N)= Nv*(R)o(N). (16¢)

It is interesting to note that {164, ») can be written in the form (144, &) under the
convention that in the product of two operators the operator which is a function of
N is placed to the left of the operator which is a function of (N+ 1).

Multiplying (16a) and (16b) gives

GIN+1)  ,G(N)
FN+1) T FR)

whose solution is
G(N)
F(N}

where the arbitrary function of g, Wig, N )= W(q, N +1) and is thus some arbitrary
P-function. For reasons discussed before, W may be taken as a function of g only.
Substituting (17) in (15) we get

FIN+1){1-g“ "W} - g F(N){1 - ¢** W} =1 (18)
where W= g>W. To solve the functional equation (18) we first determine the solution
Fy(N) to the corresponding homogeneous equation

Fo(N+1){1-¢“V W} = g F(N){1-¢* W}, (19)
The solution of (19) has the form (see appendix)

Fo(N)=Q(N)Q(N +1)P(N, q) (20)

=q4*"W(g, N) (17)
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where
QN)=— (21)

and P(N, q) is an arbitrary P-function. We shall soon see that for a suitable choice
of initial conditions the general solution of (18) is independent of P(N, 4).
We represent the general solution of (18) as

F(N)= Fy(N) Y(N) (22)
where Y(ﬁ) is to be determined. Putting (22) in (18) yields

R N (1 -~ Wi AN 42
Y(N+1,¢)=Y(N, q)+-*;,—<,%,,—)- (23)
With the use of standard techniques the solution to (23) is found to be
Y N =Y(0,q)+ N

(N,g)=Y(0,q) ‘”}TN—T[ ] (24}
where [x]=q¢*—q */(q—q") and Y(0, g) is some initial value. Using (24), (22) and
{16¢) we see that the condition u(N)]Ng0<oo leads to Y(0, g)=0. Using (20) and
(22) we thus arrive at our solutions for F(N) and G(N)

qN 1(1 _ qZN W)
(1-g*2W)(1-¢"" W)
G(N)=q* " F(N)W.

F(N)= [N]

(25)
This is independent of P as promised, but the dependence on W is non-trivial as we

shall see. One can verify that the solutions (25) do indeed satisfy (18). Using definitions
{16¢) we have

u(}\‘}) =|u(]<,—)| eia(q.ﬁ'} v(N’) — qz.‘i Wl/zlu(ﬁ)l ei,e(qﬂ}
with

N-1pq _ 2N Sy 1/2
u(NH:(“ g" {1-¢"" W} [N]) (26)

_q4ﬁ—zw}{1 _q4ﬁ+2w} N

and a(g, N ), Blg, N)some arbitrary phase factors. Equations (164, b) are also trivially
satisfied by (26). Therefore the representation (7) for g-oscillators, as realized in terms
of ordinary oscillators, may be written as

a=a{|u(N) ei°}+{q“" WY u(N)| )6
at={Ju(N)| e} +a{qu W )] e

Using (26), {27a) and (12) (for ¢, = ¢ == 1) we can obtain the canonical ¢-transfor-
mation (11) in the form:

a'= a{)a( N)| €} +{g** WY a( K| ¢} a*
o ={|a(A)] e }a" +alg®™ WA o)

(27a)

(27h)

with
1-¢* W
{1=g*~2WH1-g*" 2w}/
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We now comment on the presence of the function W{q). Let g~ 1 and a, 8 be
independent of Nin (26). Then we obtain

‘___l_winl ‘_L(l)__”zil
u(N)_(l—W(l)) gt U(N)_(I—W(l)) e'f, (28)

Thus, for g = 1, substituting (28) in (11) we get the usual SL{2, R) canonical transforma-
tion of the ordinary oscillators where « (1}, B(1) and_W(1) are the parameters of the
SL(2, R) transformations. Therefore, a(g, N), B(g, N) and W{(gq) are parameters of
the g-deformed SL(2, R) transformauons (11) Note that for W=0(and a =0, =0)
representation (7) coincides with (6) when ¢, =d¢,=1 (Y (q,0)=0). We can obtain
the case ¢, # 1 and ¢, # 1 if we consider the situation when Y(q,0)#0 in (24).
Finally, let us write down an expression for the number operator using the general

solution (6). We have

gra=22d 4 (29)

IN _
a* __¢'l¢2q 1 30

so that
=-21—In{q§+¢(q2—1)a+a} (31}
s

where ¢ ={d,¢,}"' and a”, a satisfy (8), with their harmonic oscillator realizations
given by {27a}. Equations (i0) are aiso satisfied by N as defined in (31). From
expression (31} for N we see that the spectrum is non-tr1v1ally shifted. One can, using
{31), write out an explicit relation for N in terms of N and this will contain off- diagonal
terms. Hence, the spectrum for g-oscillators is modified with respect to that of the
usual case defined by N. This is an interesting point. Another interesting question is:
what is the relation between our g-deformed SL{2, R} transformations (11} and the
quantum group SL,{Z, R)7 Whether physicai applicaiions of our resuiis are possibie
is yet another avenue worth pursuing.

F(N+1)Q(N + k) = g(q) Fo NYG(N) (A1)

where g(gq) and Q_(N’-i- k), (k=1,2,...), are known functions while Fo(N) is the
function to be determined. In (19)

k=2 g(q) =4 and QM) ={1-q*" W} (A2)
Note that if F,, F; are solutions of (A1) then

F(N+1) F(N)

AR RN (A3)
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and thus P{ I\A’, q) is a P-function. It means that the general solution of (A1) is a product
of a special solution and an arbitrary P-function. We can search for the general solution
of (A1) in the form:

k-1

Fy(N) ={ 1 Q(NH)}P(& 9). (A4)

Putting (A4) in (A1) gives
QN +R)Q(N+K) =g(9)QINIQ(N)

which after simplification results in

NIk .
o<m=% B(N, q) (A5)

where P(N+k, g)=P(N, q) is an arbitrary periodic function and we can put this
function to unity without loss of generality (IT*.3 P(N, q) is a P-function). Now using
(A2), (A4} and (A5) one arrives at solutions (20) and (21).
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