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J. Phys. A Math. Gen. 24 (1991) L63-L68. Printed in the U K  

LE’ITER TO THE EDITOR 

Harmonic oscillator realization of the canonical 
q- transformation 

A T Filippov, Debashis Gangopadhyay and A P lsaev 
Laboratory of Theoretical Physics. Joint Institute for Nuclear Research, Dubna, Moscow, 
USSR 

Received 31 October 1990 

Abstract. Exact realization of the canonical q-transformation for q-oscillators is obtained 
in the context of the harmonic oscillator realization of q-oscillators. 

Quantum Lie algebras first appeared in investigations of the quantum inverse scattering 
problem during the study of the Yang-Baxter equations [l]. They can be considered 
as some ‘deformation’ of the Lie algebra with the deformation parameter ‘s’ or 9 =es, 
such that the usual Lie algebra is reproduced in the limit s --f 0, i.e. 9 + 1. It has been 
pointed out by Drinfeld [2] that these deformed structures are essentially connected 
with quasi-triangular Hopf algebras, and the generalization to all simple Lie algebras 
has been given [2,3]. There are versions of deformed Kac-Moody and Virasoro algebras 
[4], the realization of quantum SU(2), algebra in terms of q-oscillators has been 
extensively studied [SI, and there exist q-oscillator realizations of many other quantum 
algebras [ 6 ] .  In the context of the harmonic oscillator realization of q-oscillators [7], 
it has been shown in [8] that the general solution to this realization contains two 
arbitrary functions of 9. The known realization results when these functions are taken 
to be unity. In this letter we establish a new harmonic oscillator realization of bosonic 
q-oscillators which can be interpreted as  canonical q-transformations. We obtain exact 
expressions for the transformation coefficients and again demonstrate the existence of 
arbitrary functions of 9 which, in the limit 9 +  1, are related to the parameters of the 
SL(2, R )  group. We also briefly discuss the features that distinguish our transformations 
from the transformations of the SL(2, R ) ,  group. 

The equations characterizing the q-deformed bosonic oscillator system are 

lili+-qli+d = q - N  N t = N  (1) 

Nd = i ( N -  1) N ~ + = ~ + ( N + I )  (2)  

li, li’ and N are the annihilation, creation and number operators respectively. Usual 
harmonic oscillators ii9 it are described by 

f i = a + l i  (3) 
gli+ = i+( fi+ 1) 

66’ - a^+; = 1 

fili = ii(i - 1) 

l i= a u ( A )  l i + = u ( A ) a +  ( 5 )  

(4) 

where 
realization of the q-oscillator represented in the simplest form 

is the number operator. According to [8] the most general harmonic oscillator 
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is 

where the functions @,(9 ,  k) and $2(q, k) are such that $((9, A + l ) =  @j(9 ,  k) and 
belong to what we name-as class P of the periodic functions. Considering the feature 
[$j, a^] = [@(, a^'] = [@;, NI = 0 ,  we can take $j (without loss of generality) to be func- 
tions of 9 only. Choosing @ I  = r& = 1 gives the well known realization [7]. 

We now seek the representation for q-oscillators in terms of usual harmonic 
oscillators in the form 

a=a^u(k)+u(k)a*+ a+ = u*(k)~^++a^o*(k) .  (7)  

For future convenience we denote the q-oscillators by a instead of a .̂ U(!?), u(k) are 
functions to be determined subsequently. 

For simplicity, we choose the fundamental q-commutator as 

a a + - q 2 a + a  = I .  (8) 

This is equivalent to (1)  under the identification 
a = a+ = 6 t q N / 2 ,  (9) 

Equation (2) becomes 

Na = a ( N -  1) Nat = a'( N + 1 ) .  (10) 

Using (6) and (9) we can write (7) in the form of the canonical q-transformation 
('Bogolubov q-transformation') 

i.e. 

where (a ,  a t ) ,  (a ' ,  a'+) satisfy (8), * denotes complex conjugation and 

Thus our transformations (11) act on the two-dimensional quantum space of vectors 
( a ,  a + )  satisfying (8) and preserve this property for (a' ,  a'+),  so we can interpret our 
transformation ( l l b )  as an element of the q-deformed SL(2, R )  group. However, this 
q-deformed group is not related to the quantum group SL(2, R), as the quantities 
C, fi, U*, U* in (11) are commuting operators while the elements of the SL(2, R ) ,  matrix 
U have non-trivial commutation relations. Indeed, in the theory of quantum groups 
[2, 31 SL(2, R ) ,  transformations have the form similar to ( l l b ) :  

(:+) = (; U"*)( ;+) = U( ;+). 
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However, for the SL(2, R ) ,  case we suggest that U, U, U*, U* are mutually non-commuta- 
tive objects hut they commute with (a, a+).  The conjugate transformations to (13a) are: 

(a", a"') = (a, a + )  (136) 

Then the condition that (a, at), (a', a'+) and (a", a"+) satisfy (8) (i.e. (13a, b)  are 
canonical q-transformations) gives us the condition det,( U) = uu* - q2u*u = 1 and 
the braiding ruies for the eiements of the matrix U [see 3 and references thereinj: 

uu* = q%*u (Ida) 

uu* = q2u*u (146) 

vv*(q-2-q' )  = u*u -uu* ( 1 4 ~ )  

uu = q2vu U*U* = q2u*u*  (14d) 

v*v  = vu*. W e )  

In this letter we shall concentrate on the canonical q-transformations ( 1  1 ) .  We wish 
to determine u(k) and "(6') of the representation (7). Substituting (7)  in (8) and 
using (3) and (4) we have 

( 1 5 )  F ( k +  1)-q2F( fi)+ G (  k) -q2G(  fi+ 1) = 1 

U ( f i ) U * (  k + 1 )  = 4 2 U * (  $U( fi + 1 )  (16a) 

U * ( f i ) U ( f i +  1)= q * u ( f i ) u * ( f i +  1) (16b) 
where 

F(fi)=ku*(fi)u(k) G ( f i )  = ku*(fi)u(k). ( 1 6 ~ )  

It is interesting to note that (16a, b)  can be written in the form (14a, b) under the 
convention that in the product of two operators the operator which is a function of 
k is placed to the left of the operator which is a function of ( N +  1). 

Multiplying (16a) and (16b) gives 

G ( f i + l )  4 G ( k )  
4 -  F(N+l )  F ( N )  

-= 

whose solution is 

where the arbitrary function of q, W(q,  k) = W(q,  k+l) and is thus some arbitrary 
P-function. For reasons discussed before, W may be taken as a function of q only. 
Substituting (17) in (15)  we get 

(18) 
where W =  q2k To solve the functional equation (18) we first determine the solution 
Fo( fi) to the corresponding homogeneous equation 

F(fi+ 1){1 - q 4 ' F i + 2 ) ~ ) - q z F (  $){l -q4' %} = 1 

Fo( fi+ 1){1 -q4 'p j+2 '6 ' )=  q2Fo( k ) { 1  -q4' ~ ) .  (19) 
The solution of.(19) has the form (see appendix) 

F d k ) = Q ( f i ) Q ( k + l ) P ( f i ,  q )  
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where 

and P ( 4  q )  is an arbitrary P-function. We shall soon see that for a suitable choice 
of initial conditions the general solution of (18) is independent of P ( 2 9 ) .  

We represent the general solution of ( 1 8 )  as 

F ( f i )  = F o ( 6 ) Y ( f i )  (22) 
where Y ( f i )  is to be determined. Putting (22) in (18) yields 

With the use of standard techniques the solution to (23) is found to be 

where [XI = q x -  4-%/(9  - q - ' )  and y(0.9) is some initial value. Using (24). (22) and 
( 1 6 ~ )  we see that the condition ~ ( N ) ) f i ~ ~ : c o  leads to Y(O,q)=O. Using (20) and 
(22) we thus arrive at our solutions for F ( N )  and G(&)  

This is independent of P as promised, but the dependence on W is non-trivial as we 
shall see. One can verify that the solutions (25) do indeed satisfy (IS).  Using definitions 
(16c) we have 

u ( & ) = I u ( + ) l  e ie(q . f i )  fi) = p wl/z/u(&)J ,Wf.fi) 

with 

and a(9, f?), p ( 9 ,  fi) some arbitrary phase factors. Equations (16a. b )  are also trivially 
satisfied by (26). Therefore the representation (7) for q-oscillators, as realized in terms 
of ordinary oscillators, may be written as 

a = ~ { / u ( l s ) /  eL=}+{q2* w"~/~(T?)/ e'P)a^+ 

a+ ={ /u (&) l  e-'")i+-ti{q2' ~ " ~ / u ( f i ) /  e-'@). 
(27a) 

Using (26).  (270) and (12) (for 6, = #z = 1) we can obtain the canonical q-transfor- 
mation ( 1  1) in the form: 

a+=a{/i i(fi iT)/  e'")+{q2' ~ " ~ l i i ( f i ) l  es@)a+ 

a f + = { l u ( & ) /  e-8*)a++0{92f i~1/21t i ( f i )~  e-'@) 
(276) 

with 
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We now comment on the presence of the function W ( q ) .  Let q + 1 and a, p be 
independent of N in (26). Then we obtain 

"(A)=( W(1) ) ' i 2  eig"'. (28) 1 - W(1) 1- W(1) 

Thus, for q = 1, substituting (28) in ( I  1) we get the usual SL(2, R )  canonical transforma- 
tion of the ordinary oscillators where a ( l ) , p ( l )  and-W(I) are the parameters of the 

the q-deformed SL(2, R )  transformations (11). Note that for W = O  (and a =0, p =0) 
representation (7) coincides with (6) when 6, = 42 = 1 ( Y ( q ,  0) = 0). We can obtain 
the case 4, # 1 and q52 # 1 if we consider the situation when Y(q, 0) # 0 in (24). 

Finally, let us write down an expression for the number operator using the general 
solution (6). We have 

SL(2, R )  transfoE"i0ns. Thcreforc, c(q, .N!, !?!q, N) and W!q? ere p2r2!?leters of 

Then, using (9) 

4142q2* - 1 
9 2 -  1 

a+a = 

so that 

1 

2s 
N = -  In{+ + + ( q 2 -  ~ ) a + a ]  (31)  

where 4 =(4,&-' and at, a satisfy (8), with their harmonic oscillator realizations 
given by (27aj. Equations ( i O j  are ais0 satisfied b y  N as detined in (3tj. From 
expression (31 )  for N we see that the spectrum is non-trivially shifted. One can, using 
(31), write out an explicit relation for N in terms of N and this will contain off-diagonal 
terms. Hence, the spectrum for q-oscillators is modified with respect to that of the 
usual case defined by N.  This is an interesting point. Another interesting question is: 
what is the relation between our q-deformed SL(2, R)  transformations (11)  and the 
quanium group SL& E ) ?  Wieiher physicai appiications of our resuiis are possiboie 
is yet another avenue worth pursuing. 

Appendix 

nquariun iir) IS UI tile general lorin r A:.. , .A\  I. .P.L. .... 1 c..- 

F,(fi+l)e(%+ k )  = g ( q ) F , ( k ) Q ( f i )  (AI)  

where g ( q )  and Q(k+ k),  ( k =  1,2, .  . .), are known functions while &(A) is the 
function to be determined. In (19) 

(A21 
44 - k = 2  g ( q )  = Y 2  and Q ( % ) = { I  - 4  W ] .  

Note that if F , ,  F2 are solutions of ( A l )  then 
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and thus P( 15, q )  is a P-function. It means that the general solution of ( A I )  is a product 
of a special solution and an arbitrary P-function. We can search for the general solution 
of ( A l )  in the form: 

Putting (A4) in ( A l )  gives 

O ( ~ + k ) Q ( 1 5 + k ) = g ( q ) O ( 1 5 j c 3 ( 1 5 )  
which after simplification results in 

where & f i + k ,  q )  = &I?, q )  is an arbitrary period$ function and we can put this 
function to unity without loss of generality (U::; P ( N ,  q )  is a P-function). Now using 
(A2), (A4) and (A5) one arrives at solutions (20) and (21). 
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